1 1 M ay 2 00 9 A Characetrization of Vertex Operator Algebra L ( 12 , 0 ) ⊗ L ( 1 2 , 0 )

نویسنده

  • Chongying Dong
چکیده

It is shown that any simple, rational and C2-cofinite vertex operator algebra whose weight 1 subspace is zero, the dimension of weight 2 subspace is greater than or equal to 2 and with central charge c = 1, is isomorphic to L(12 , 0) ⊗ L( 1 2 , 0). 2000MSC:17B69

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Characetrization of Vertex Operator Algebra L(

It is shown that any simple, rational and C2-cofinite vertex operator algebra whose weight 1 subspace is zero, the dimension of weight 2 subspace is greater than or equal to 2 and with central charge c = 1, is isomorphic to L(12 , 0) ⊗ L( 1 2 , 0). 2000MSC:17B69

متن کامل

N ov 2 00 7 W - algebra W ( 2 , 2 ) and the vertex operator algebra L ( 1 2 , 0 ) ⊗ L ( 1 2 , 0 )

In this paper the W -algebra W (2, 2) and its representation theory are studied. It is proved that a simple vertex operator algebra generated by two weight 2 vectors is either a vertex operator algebra associated to a highest irreducible W (2, 2)-module or a tensor product of two irreducible Virasoro vertex operator algebras. Furthermore, any rational, C2-cofinite and simple vertex operator alg...

متن کامل

m at h . Q A ] 1 8 M ar 1 99 9 Decomposition of the vertex operator algebra V √ 2 A 3

A conformal vector with central charge c in a vertex operator algebra is an element of weight two whose component operators satisfy the Virasoro algebra relation with central charge c. Then the vertex operator subalgebra generated by the vector is isomorphic to a highest weight module for the Virasoro algebra with central charge c and highest weight 0 (cf. [M]). Let V2Al be the vertex operator ...

متن کامل

A vertex operator algebra structure of degenerate minimal models, I

We study fusion rings for degenerate minimal models (p = q) for N = 0, N = 1 and N = 2 (super)conformal algebras. In the first part we consider a family of modules for the Virasoro vertex operator algebra L(1, 0), and show that a fusion ring of the family is isomorphic to a Grothendieck ring Rep(sl(2,C)). In the second part, we used similar methods for the family of modules for N = 1 Neveu Schw...

متن کامل

m at h . Q A ] 1 4 M ay 2 00 4 The Automorphism Group of the Vertex Operator Algebra V + L for an even lattice L without roots Hiroki SHIMAKURA

The automorphism group of the vertex operator algebra V + L is studied by using its action on isomorphism classes of irreducible V + L -modules. In particular, the shape of the automorphism group of V + L is determined when L is isomorphic to an even unimodular lattice without roots, √ 2R for an irreducible root lattice R of type ADE and the Barnes-Wall lattice of rank 16.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009